

Marit Kragt, Germán Puga, Emanuel Gomez, Ben White, David Pannell Centre for Agricultural Economics and Development The University of Western Australia

the National Risk Management initiative

- Supporting ARGs with social science research
- Focus group discussions (and guide)
- Interviews with growers about decision making (and guide)
- Collating decision support tools for grain growers
- Text analysis of extension materials ('how is risk communicated')
- Analysis of grain prices and marketing risks

- 36 interviews conducted to date
- Huge thank you to BCG, AMPS, GOA, MIG, WANTFA, StC, and others who've assisted

Now → Analyse responses

→ Revise targeted questions

Goals in farming

- ➤ Passion: "I'm passionate about growing crops. It doesn't matter if it's for myself or for anybody else. I just love farming."
- > Succession: "Trying to build something that they can take over in the future hopefully"
- ➤ Maximising yield: "Being a very good farmer, like trying to maximise our production, but really to out-compete or out-perform people in the region."

Most relevant risks

- > "I am genuinely concerned about, not climate change, not global warming, but the climate variability we had. [..] That's the most relevant risk for long-term sustainability of the farm."
- ➤ "Government intervention and market manipulation" "Government interference, by that I mean new legislation, the willingness to push environmental targets over sustainable agricultural growth."

- With agronomists, peers, spreadsheet, and a lot of 'gut feel' and intuition
- Also Heuristics cognitive shortcuts or 'rules of thumb' that simplify decisions, especially under uncertainty.
- Growers combine rules-of-thumb with available data and external advice.
- Growers' rules-of-thumb are derived from extensive personal experience, historical observations, and practical considerations of specific farm conditions.

[About a planting decision:] "You're using a bit of that gut feel I suppose of how things are placed. If you feel you've got a good profile of moisture and you're feeling a bit more confident about the season, you might say well I'll choose the higher risk cotton crop."

[About a N-decision:] "You're driving to the paddock... looking at a dozen forecasts on your phone... As you're driving in, you're changing your nitrogen mix or ratio... double the rate or halve it"

"If we don't have like a metre of subsoil moisture, or thereabouts, we won't sow canola."

"My strategy is to never forward sell more than what I think is going to be 25% production."

Difficult decisions

Machinery purchases "Probably buying major new machinery and infrastructure is the one we tease out the most."	50%
Nitrogen application (timing & quantity) "Probably the nitrogen is the trickiest because we don't, well this year was a classic example, I probably put a load of urea out too many."	42%
Land purchasing/leasing "Land purchasing[is] hard to justify, very difficult."	38%
Crop choice and mix "To plant or not to plant. That's probably the biggest decision."	35%
Marketing decisions / selling commodities "Marketing strategies[are] painful. Difficult I'll say very difficult."	31%

 Estimating future wheat price distributions (Ben White)

- "fear of missing out on high prices"
- "you know what the price was yesterday or last week or last month and you're hoping the market will get back there and it doesn't always do that"

. . . .

"and you fall into a trap of inaction"

Your behavioural bias

Our brains look for patterns

Results from price analysis

- 1. Most prices move unpredictably and don't follow a consistent pattern their average level and how much they fluctuate keep changing over time.
- 2. The further into the future you try to predict prices, the less certain the forecast becomes so the range of possible prices gets wider.
- 3. There are times when prices change a lot and times when they change only a little. This up-and-down movement, called volatility, is a useful way to measure risk.

These results hold for various grain crops (wheat, oats, barley, canola) and ports.

Prices are a random walk

-20

- There is no clear stable trend (although 2025 prices are, on average, higher than 2015)
- The best forecast of tomorrow's price is today's price

Periods of high and low volatility

Can we predict grain prices? WEST

Distributions widen over time

APW1 price distributions for different lead times (3, 90 and 126 trading days)

- Price distribution predicted from 1 January
- Over time, the price distribution flattens
 → risk increases
- This has implications for storage decisions

Implications

- Selling today is the low-risk strategy.
- Knowing market volatility may help speed up your decision.
- Set a farm budget, with different prices at upper and lower limits → how much does profit change with price helps you decide on a target (or floor).

• In the next slide, we have modelled expected revenues for different lengths of storage, incorporating overdraft interest and storage costs (\$40/t in this example).

Storage and risk aversion WESTERN AUSTRALIA

	3 days	3 months	6 months
Predicting out from 1 Jan 202	4		
Mean revenue	390k	384k	377k
Min -max revenue	(332k-437k)	(69k-1,056k)	(67k-95k)
Predicting out from 1 April 20	24		
Mean revenue	373k	367k	
Min -max revenue	(295k-436k)	(84k-2,260k)	

- Models are robust and can be used to generate possible price distributions (based on info up to now).
- Plan to run scenarios at different interest rates, starting dates, and risk preferences to determine value of waiting and storage risks.

Next steps (2025-26)

- Complete price analysis under different behavioural rules.
- Analyse interview data received to now, revise questions to be more targeted.
- Set up evaluation questions for ARGs to use to assess behavioural change.
- Continued engagement with ARGs and supporting behavioural science questions.
- Analyse risk communication in extension materials and decision-support-tools, to derive advice on how best to communicate risky decisions.

marit.kragt@uwa.edu.au

german.puga@uwa.edu.au

tamara.harold@uwa.edu.au